Math, asked by akashingole2002, 1 month ago

If X is a Poisson variate such that P(X=2)=P(X=3), then P(X=0) is....​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{X is a Poisson variate with P(X=2)=P(X=3)}

\underline{\textbf{To find:}}

\textsf{The value of P(X=0)}

\underline{\textbf{Solution:}}

\textsf{The probability mass function of Poisson distribution is}

\mathsf{P(X=x)=\dfrac{e^{-\lambda}{\lambda}^x}{x!}\;\;x=0,1,2,3,\;.\;.\;.}

\textsf{As per given data,}

\mathsf{P(X=2)=P(X=3)}

\mathsf{\dfrac{e^{-\lambda}{\lambda}^2}{2!}=\dfrac{e^{-\lambda}{\lambda}^3}{3!}}

\mathsf{\dfrac{{\lambda}^2}{1{\times}2}=\dfrac{{\lambda}^3}{1{\tims}2{\times}3}}

\mathsf{\dfrac{1}{1}=\dfrac{\lambda}{3}}

\mathsf{1=\dfrac{\lambda}{3}}

\implies\boxed{\mathsf{\lambda=3}}

\mathsf{Now,}

\mathsf{P(X=0)=\dfrac{e^{-3}3^0}{0!}}

\mathsf{P(X=0)=\dfrac{e^{-3}(1)}{1}}

\implies\boxed{\boxed{\mathsf{P(X=0)=e^{-3}}}}

Similar questions