Math, asked by anjanithakur1975, 1 month ago

If x is a positive number such that the ratio 3x to
 \sqrt[3]{x}
is equal to 27:1 then find then find the value of
x  ^{3 } ratio \: 27 \sqrt[3]{x {}^{2} }

Answers

Answered by mayanegi660
0

Answer:

please mark me brainliest

Answered by isha00333
3

Given:\[3x:\sqrt[3]{x} = 27:1\].

To find: the value of \[{x^3}:27\sqrt[3]{{{x^2}}}\].

Solution:

Observe that from the question and find the value of x.

\[3x:\sqrt[3]{x} = 27:1\]

\[ \Rightarrow \frac{{3x}}{{\sqrt[3]{x}}} = \frac{{27}}{1}\]

\[\begin{array}{l} \Rightarrow 3x \times 1 = 27 \times \sqrt[3]{x}\\ \Rightarrow 3x = 27\sqrt[3]{x}\\ \Rightarrow 27{x^3} = {\left( {27} \right)^3}x\end{array}\]

\[\begin{array}{l} \Rightarrow {x^2} = {27^2}\\ \Rightarrow x =  \pm 27\end{array}\]

Find the value of\[{x^3}:27\sqrt[3]{{{x^2}}}\].

\[\frac{{{x^3}}}{{27\sqrt[3]{{{x^2}}}}} = \frac{{\left( {{{27}^3}} \right)}}{{27 \times \sqrt[3]{{{{27}^2}}}}}\]

         \[ = \frac{{{{27}^2}}}{{\sqrt[3]{{{{27}^2}}}}}\]

         \[ = \frac{{729}}{9}\]

         \[ = \frac{{81}}{1}\]

Hence, \[{x^3}:27\sqrt[3]{{{x^2}}} = 81:1\].

Similar questions