Math, asked by shailendersi7911, 5 months ago

If x is a positive real number and exponents are rational numbers,then simply the -

(1) +
(x(a+b))2 (x(b+c))2(x(c+a))2. divided by
{x(a)x(b)x(c)}4​

Answers

Answered by legendgamerz196
1

Answer:

please mark me as a Brainliest

Step-by-step explanation:

Solution

To find the value of

[\frac{x^{b} }{x^{c} } ]^{b+c -a} .[\frac{x^{c} }{x^{a} } ]^{c+a-b} .[ \frac{x^{a} }{x^{b} } ]^{a+b-c}[

x

c

x

b

]

b+c−a

.[

x

a

x

c

]

c+a−b

.[

x

b

x

a

]

a+b−c

Here , we are applying property of exponent

\frac{x^{a} }{x^{b} } = x^{a-b}

x

b

x

a

=x

a−b

Therefore on applying this we have

[{x^{b-c} }]^{b+c -a} .[{x^{c-a} } ]^{c+a-b} .[ {x^{a-b} ]^{a+b-c}

This can be simplified as

= [ x^{(b+c)(b-c)} .x^{-a(b-c)} ] .[ x^{(c+a)(c-a)} .x^{-b(c-a)} ] .[ x^{(a+b)(a-b)} .x^{-c(a-b)} ]=[x

(b+c)(b−c)

.x

−a(b−c)

] .[x

(c+a)(c−a)

.x

−b(c−a)

] .[x

(a+b)(a−b)

.x

−c(a−b)

]

Here we are applying a^2 - b^2 = {a-b}{a+b}a

2

− b

2

= a−ba+b

We have

= [ x^{(b^{2} -c^{2} )} .x^{-ab+ac} ] .[ x^{(c^{2} -a^{2} )} .x^{-bc+ab} ] .[ x^{(a^{2} -b^{2} )} .x^{-ac+bc} ]=[x

(b

2

−c

2

)

.x

−ab+ac

] .[x

(c

2

−a

2

)

.x

−bc+ab

] .[x

(a

2

−b

2

)

.x

−ac+bc

]

Again using properties of exponent we have

= [ x^{(b^{2} -c^{2} +c^{2} -a^{2} + a^{2} -b^{2} )} ] .[ x^{(-bc+ab-ab-ca+bc+ca)} ]=[x

(b

2

−c

2

+c

2

−a

2

+a

2

−b

2

)

].[ x

(−bc+ab−ab−ca+bc+ca)

]

= [ x^{0} ] .[ x^{0} ]=[x

0

].[ x

0

]

= 1 . 1= 1.1

= 1

Hence , finally we get 1

Similar questions