Math, asked by reshmi789, 1 month ago

if x is an acute angle what is the minimum value of tan^2x +cot^2x​

Answers

Answered by rakeshdubey33
4

Minimum value = 2.

Step-by-step explanation:

Let  \:  \:  \: tan x = y,  \:  \: then  \:  \: cot x =  \frac{1}{y}

Then,

  {tan}^{2} x \:  +  \:  {cot}^{2} x \:  =  {y}^{2}  +  \frac{1}{ {y}^{2} }

 {y}^{2}  +  \frac{1}{ {y}^{2} }  =  {(y -  \frac{1}{y} )}^{2}  + 2

Now, the minimum value of

 {y}^{2}  +  \frac{1}{ {y}^{2} }  =

will occur when,

 {(y -  \frac{1}{y} )}^{2}

will be minimum and minimum value of

 {(y -  \frac{1}{y} )}^{2}  \: will \:  \: be \:  \: zero \: .

Hence, the minimum value of

 {y}^{2}  +  \frac{1}{ {y}^{2} }  =  {tan}^{2} x \:  +  {cot}^{2} x \: \:  will \:  \: be \: 2.

Answer = 2.

Answered by aryanagarwal466
0

Answer:

The minimum value is 2.

Step-by-step explanation:

Assuming tanx=y and cot x=\frac{1}{y}

Adding and squaring both equations

tanx^{2} + cotx^{2} = y^{2} + (\frac{1}{y} )^{2}

y^{2} + (\frac{1}{y} )^{2}=(y-\frac{1}{2} )^{2} +2

Minimum value of y^{2} + (\frac{1}{y} )^{2} when (y-\frac{1}{2} )^{2} is zero.

Hence, the required minimum value is 2

#SPJ3

Similar questions