Math, asked by gaurav459, 1 year ago

if x is equal to 1 + root 2 find the value of x square + 1 upon x square
if x = 1 +  \sqrt{2 \: find \: the \: value of  {x}^{2} +  \frac{1}{ {x}^{2} }

Answers

Answered by rakeshmohata
0
Hope u like my process
------------------------------------
x = 1 +  \sqrt{2}  \\  \frac{1}{x}  =  \frac{1  }{1 +  \sqrt{2} }  =  \frac{( \sqrt{2}  - 1)}{( \sqrt{2} - 1)( \sqrt{2}  + 1) }  \\  =   \frac{ \sqrt{2} - 1 }{( { \sqrt{2}) }^{2} -  {1}^{2}  }  =  \frac{ \sqrt{2}  - 1}{2 - 1}  =  \sqrt{2}  - 1 \\  \\ so.. \:  \:  \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  = (x +  \frac{1}{x} )^{2}  - 2x. \frac{1}{x}  \\  = (1 +  \sqrt{2}  +  \sqrt{2}  - 1)^{2}  - 2 \\  =  {(2 \sqrt{2} )}^{2}  - 2 = 8 - 2  \\ = 6
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
Hope this is ur required answer
Proud to help you
Similar questions