Math, asked by piyush7070, 1 year ago

if x is equal to 10 + sin a and Y is equal to tan a minus sin and then prove that x square minus y square is equal to 4 by x y​

Attachments:

Answers

Answered by atul3718
1

since \\ x {}^{2}   - y {}^{2}  = 4  \sqrt{xy}  \\  (tan a +  sin a) {}^{2} +   (tan a  -  sin a) {}^{2}  \\  =  \tan {}^{2} a +  \sin {}^{2} a + 2 \: tan \: a \times sin \:  \: a \:  +  \tan {}^{2} a +  \sin {}^{2} a - 2 \: tan  \: a\times sin \: a \\ \binom{ \sin^{2} a}{ \cos {}^{2}a }  +  \sin {}^{2} + 2 \times \frac{ sina }{cosa}  \times  sina +   \binom{ \sin {}^{2} a}{ \cos {}^{2} a}  - 2 \times \frac{ sina }{cosa}  \times sin \:a   \\

I hope you solve it !

Similar questions