Math, asked by Nandha10, 1 year ago

if x is equal to 2 + root 3 find the value of x square + 1 by x square​

Answers

Answered by Jeniyaa
18

If x=2+√3

then

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{ {2}^{2} - ( \sqrt{3}) {}^{2}   }

 \frac{1}{x} =  \frac{2 -  \sqrt{3} }{4 - 3}

 \frac{1}{x}  = 2 -  \sqrt{3}

Hence,

 =  > x +  \frac{1}{x}

 =  > 2 +  \sqrt{3}  + 2 -  \sqrt{3}

 =  > 4

Now,if

x +  \frac{1}{x}  = 4

Squaring both the sides-

(x +  \frac{1}{x} ) {}^{2}  = (4) {}^{2}

 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2. \frac{1}{x} .x = 16

Hence,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14


Anonymous: Thanks
praveenkumar0: thanks
Similar questions