Math, asked by harikishannadiminti, 10 months ago

if x is equal to 2 + root 3 find x minus one by X whole cube​

Answers

Answered by rameshschools
0

Answer:

Step-by-step explanation:It is given that x=2+\sqrt3\\

x minus one by X = 2-\sqrt{3}

x minus one by X whole cube​=26-15\sqrt{3}

Answered by LeParfait
2

The solution is done below for you :

Given : \mathrm{x=2+\sqrt{3}}

To find : \mathrm{(x-\frac{1}{x})^{3}} = ?

Solution :

Here, \mathrm{x=2+\sqrt{3}}

Then, \mathrm{\frac{1}{x}=\frac{1}{2+\sqrt{3}}}

We multiply \mathrm{(2-\sqrt{3})} to both the numerator and the denominator to rationalise the denominator:

\quad\quad \mathrm{=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}}

\quad\quad \mathrm{=\frac{2-\sqrt{3}}{4-3}}

\quad\quad \mathrm{=2-\sqrt{3}}

Then \mathrm{x-\frac{1}{x}}

\quad \mathrm{=(2+\sqrt{3})-(2-\sqrt{3})}

\quad \mathrm{=2+\sqrt{3}-2+\sqrt{3}}

\quad \mathrm{=2\sqrt{3}}

\implies \mathrm{x-\frac{1}{x}=2\sqrt{3}}

\to \mathrm{(x-\frac{1}{x})^{3}=(2\sqrt{3})^{3}}

\quad\quad\quad\quad\quad \mathrm{=2^{3}\times (\sqrt{3})^{3}}

\quad\quad\quad\quad\quad \mathrm{=8\times 3\sqrt{3}}

\quad\quad\quad\quad\quad \mathrm{=24\sqrt{3}}

\therefore \boxed{\mathrm{\quad(x-\frac{1}{x})^{3}=24\sqrt{3}\quad}}

Similar questions