If x is equal to 2+ root 5 then find xsquare +1/x squate
Answers
Answered by
99
Heya ✋
Let see your answer !!!
Given that
x = 2 + √5
x^2 + 1/x^2 = ?
Solution
1/x = 1/2 + √5
By rationalization
= 1 × (2 - √5)/(2 + √5) × (2 - √5)
= 2 - √5/(2)^2 - (√5)^2
= 2 - √5/4 - 5
= 2 -√5/-1
= -2 + √5
Therefore ,
x^2 + 1/x^2
= (2 + √5)^2 + (-2 + √5)^2
= (2)^2 + (√5)^2 + 2 × 2 × √5 + (-2)^2 + (√5)^2 + 2 × (-2) × √5
= 4 + 5 + 4√5 + 4 + 5 - 4√5
= 9 + 4√5 + 9 - 4√5
= 18
Thanks :)))))
Let see your answer !!!
Given that
x = 2 + √5
x^2 + 1/x^2 = ?
Solution
1/x = 1/2 + √5
By rationalization
= 1 × (2 - √5)/(2 + √5) × (2 - √5)
= 2 - √5/(2)^2 - (√5)^2
= 2 - √5/4 - 5
= 2 -√5/-1
= -2 + √5
Therefore ,
x^2 + 1/x^2
= (2 + √5)^2 + (-2 + √5)^2
= (2)^2 + (√5)^2 + 2 × 2 × √5 + (-2)^2 + (√5)^2 + 2 × (-2) × √5
= 4 + 5 + 4√5 + 4 + 5 - 4√5
= 9 + 4√5 + 9 - 4√5
= 18
Thanks :)))))
indianbro74:
thanks to you it was little hard but it is very good
Answered by
46
Here is your answer. Please mark this answer as brainliest .
Attachments:
Similar questions
Physics,
8 months ago
Math,
8 months ago
Chemistry,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago