Math, asked by afreen85, 1 year ago

if x is equal to 2 + under root 5 prove that is X square + 1 upon x square is equal to 18​

Answers

Answered by LovelyG
15

Answer:

x = 2 +  \sqrt{5}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{5} }  \times  \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} } \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{5} }{(2) {}^{2}  - ( \sqrt{5} ) {}^{2} }  \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{5} }{4 - 5}  \\  \\  \frac{1}{x}  =   - 2 +  \sqrt{5}  \\  \\ x +  \frac{1}{x}  = 2 +  \sqrt{5}  - 2 +  \sqrt{5}  \\  \\ x +  \frac{1}{x}  = 2 \sqrt{5}  \\  \\ (x +  \frac{1}{x}){}^{2}  = (2 \sqrt{5} ) {}^{2}  \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  + 2 = 20 \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 20 - 2 \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} }  = 18 \\  \\  \quad \quad \huge{ \bf proved.}

Answered by ganeshsharma15131242
1

Answer:

do so do do go big seems aao

Similar questions