Math, asked by 15452015, 1 year ago

If x is equal to 3 minus 2 root 2 find X square + 1 by x square

Answers

Answered by DaIncredible
268
Heya !!

Identity used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

x = 3 - 2 \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }

On rationalizing the denominator we get,


 \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{ {(3)}^{2}  -  {(2 \sqrt{2}) }^{2} }  \\  \\  \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{9 - 8}  \\  \\  \frac{1}{x}  = 3 + 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = (3 - 2 \sqrt{2} ) + (3 + 2 \sqrt{2} ) \\  \\ x +  \frac{1}{x}  = 3 - 2 \sqrt{2}  + 3 + 2 \sqrt{2}  \\  \\ x +  \frac{1}{x}  = 6

On squaring both the sides we get,

 {(x +  \frac{1}{x}) }^{2}   =  {(6)}^{2}  \\  \\  {(x)}^{2}  +  {( \frac{1}{x}) }^{2}  + 2 \times x \times  \frac{1}{x}  = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 36 - 4 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34

Hope this helps ☺
Answered by pikachu88
65
hope this helps you
Attachments:
Similar questions