if x is equal to 3 + root 8 then find the value of x square + 1 / x square
Answers
Step-by-step explanation:
hope you all understand
Step-by-step explanation:
Given :-
x = 3+√8
To find :-
Find the value of x²+(1/x²) ?
Solution :-
Given that :
x = 3+√8 --------------(1)
=> 1/x = 1/(3+√8)
The denominator = 3+√8
The Rationalising factor of 3+√8 is 3-√8
On Rationalising the denominator then
=> 1/x = [1/(3+√8)]×[(3-√8)/(3-√8)]
=> 1/x =(3-√8)/[(3+√8)(3-√8)]
=> 1/x = (3-√8)/[3²-(√8)²]
Since (a+b)(a-b) = a²-b²
Where , a = 3 and b = √8
=> 1/x = (3-√8)/(9-8)
=> 1/x = (3-√8)/1
=> 1/x = 3-√8 ----------------(2)
Now We know that
(a+b)² = a²+2ab+b²
=> a²+b² = (a+b)²-2ab
On applying this for this problem
=> x²+(1/x)² = [x+(1/x)]²-2(x)(1/x)
=> x²+(1/x²) = [x+(1/x)]²-2(x/x)
=> x²+(1/x²) = [x+(1/x)]²-2
=> x²+(1/x²) = (3+√8+3-√8)²-2
=> x²+(1/x²) = (3+3)²-2
=> x²+(1/x²) = (6)²-2
=> x²+(1/x²) = 36-2
=> x²+(1/x²) = 34
Method -2:-
x = 3+√8
x² = (3+√8)²
=> x² = 3²+2(3)(√8)+(√8)²
=> x² = 9+6√8+8
=> x² = 17+6√8
and
1/x = 3-√8
=> 1/x² = (3-√8)²
=> 1/x² = 3²-2(3)(√8)+(√8)²
=> 1/x² = 9-6√8+8
=> 1/x² = 17-6√8
Now,
x²+(1/x²) = 17+6√8+17-6√8
=> x²+(1/x²) = 17+17
=> x²+(1/x²) = 34
Method-3:-
x = 3+√8
1/x = 3-√8
now,
We know that
(a+b)² + (a-b)² = 2(a²+b²)
x²+(1/x²) = (3+√8)²+(3-√8)²
=> x²+(1/x²) = 2[3²+(√8)²]
=> x²+(1/x²) = 2(9+8)
=> x²+(1/x²) = 2(17)
=> x²+(1/x²) = 34
Answer:-
The value of x²+(1/x²) = 34
Used formulae:-
- (a+b)² = a²+2ab+b²
- (a-b)² = a²-2ab+b²
- (a+b)(a-b) = a²-b²
- (a+b)² + (a-b)² = 2(a²+b²)
- The Rationalising factor of a+√b is a-√b