Math, asked by KAMINEE, 1 year ago

if x is equal to 3 + under root 8 and Y is equal to 3 minus under root 8 then 1 divided by X square + 1 / square is equal to


DaIncredible: 1/x^2 + 1/y^2 ?

Answers

Answered by DaIncredible
11
Heya !!!

Identities used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}   \\ \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\  \\  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  \\



x = 3 +  \sqrt{8}  \\  \\  \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  \\

On rationalizing the denominator we get,

 \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  \times  \frac{3 -  \sqrt{8} }{3 -  \sqrt{8} }  \\  \\  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{(3 +  \sqrt{8} )(3 -  \sqrt{8}   )}  \\  \\  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{ {(3)}^{2}  -  {( \sqrt{8}) }^{2} }  \\  \\  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{9 - 8}  \\  \\  \frac{1}{x}  = 3 -  \sqrt{8}  \\

On squaring both the sides we get

 {( \frac{1}{x} )}^{2}  = (3 -  \sqrt{8} )^{2}  \\  \\   \frac{1}{ {x}^{2} }  = ( {(3)}^{2}  +  {( \sqrt{8} )}^{2}  - 2(3)( \sqrt{8} )) \\  \\  \frac{1}{ {x}^{2} }  = 9 + 8 - 6 \sqrt{8}  \\  \\  \frac{1}{ {x}^{2} }  = 17 - 6 \sqrt{8}

Now,

y = 3 - √8

 \frac{1}{y}  =  \frac{1}{3  -   \sqrt{8} }  \\

On rationalizing the denominator we get,

 \frac{1}{y}  =  \frac{1}{3  -   \sqrt{8} }  \times  \frac{3  +   \sqrt{8} }{3  +   \sqrt{8} }  \\  \\  \frac{1}{y}  =  \frac{3  +   \sqrt{8} }{(3 +  \sqrt{8} )(3 -  \sqrt{8}) }  \\  \\  \frac{1}{y}  =  \frac{3  +   \sqrt{8} }{ {(3)}^{2} -  {( \sqrt{8} )}^{2}  }  \\  \\  \frac{1}{y}  =  \frac{3  +   \sqrt{8} }{9 - 8}  \\  \\  \frac{1}{y}  = 3  +   \sqrt{8}  \\

On squaring both the sides we get,

 {( \frac{1}{y} )}^{2}  =  {(3  +   \sqrt{8} )}^{2}  \\  \\  \frac{1}{ {y}^{2} }  = ( {(3)}^{2}  +  {( \sqrt{8}) }^{2}  + 2(3)( \sqrt{8} ) \\  \\  \frac{1}{ {y}^{2} }  = 9 + 8 + 6 \sqrt{8}  \\  \\  \frac{1}{ {y}^{2} }  = 17 + 6 \sqrt{8}

So,
Putting the values in

 \frac{1}{ {x}^{2} }  +  \frac{1}{ {y}^{2} }  = (17 - 6 \sqrt{8} ) + (17 + 6 \sqrt{8} ) \\  \\  \frac{1}{ {x}^{2} }  +  \frac{1}{ {y}^{2} }  = 17 - 6 \sqrt{8}  + 17 + 6 \sqrt{8}  \\  \\  \frac{1}{ {x}^{2} }  +  \frac{1}{ {y}^{?} }  = 17 + 17 \\  \\  \frac{1}{ {x}^{2} }  +  \frac{1}{ {y}^{2} }  = 34

Hope this helps ☺
Similar questions