Math, asked by prashant2346, 1 year ago

if x is equal to 6 minus root 35 find the value of x square + 1 upon x square ​

Answers

Answered by ratdna
14

If :

x = 6 -  \sqrt{35}

Find :

 {x}^{2}  +  \frac{1}{ {x}^{2} }

Now,

 {x}^{2}  =  {(6 -  \sqrt{35}) }^{2}

 = 36 - 12 \sqrt{35}  + 35

 = 71 -  12\sqrt{35}

Then,

 \frac{1}{ {x}^{2} }  =  \frac{1}{ {(71 - 12 \sqrt{35}) } }

Rationalising the denominator,

 \frac{1}{71 -  12\sqrt{35} }  \times  \frac{71 +  12\sqrt{35} }{71 +  12\sqrt{35} \: }

 =  \frac{71 + 12 \sqrt{35} }{5041 - 5040}  = 71 + 12\sqrt{35}

Putting the values in the equation,

=

 71 -  12\sqrt{35}  + 71 +  12\sqrt{35}

= 71+71 = 142

☮✌

Answered by saurabhdubey77
6

the value of of x²+1/x²=142.....

Attachments:
Similar questions