if x is equal to 8+3√7 then find the value of x^2 + 1 /x^2
Answers
x = 8 + 3√7 ....( i )
∴ 1 / x = 1 / ( 8 + 3√7 )
---------------------------------------------------
Multiply and divide by 8 - 3√7
--------------------------------------------------
⇒ 1 / x = ( 8 - 3√7 ) / { ( 8 + 3√7 ) ( 8 - 3√7 )
-------------------------------------------------
Identity : ( a + b ) ( a - b ) = a^2 - b^2
-------------------------------------------------
⇒ 1 / x = ( 8 - 3√7 ) / { ( 8 )^2 - ( 3√7 )^2 }
⇒ 1 / x = ( 8 - 3√7 ) / ( 64 - 63 )
⇒ 1 / x = ( 8 - 3√7 ) / 1
⇒ 1 / x = 8 - 3√7 ....( ii )
Adding ( 1 ) & ( 2 ),
⇒ x + 1 / x = 8 + 3√7 + 8 - 3√7
⇒ x + 1 / x = 8 + 8
⇒ x + 1 / x = 16
------------------------------------------
Square on both sides,
-----------------------------------------
⇒ ( x + 1 / x )^2 = 16^2
----------------------------------------
( a + b )^2 = a^2 + b^2 + 2ab
----------------------------------------
⇒ x^2 + 1 / x^2 + 2( x * 1 / x ) = 256
⇒ x^2 + 1 / x^2 + 2( 1 ) = 256
⇒ x^2 + 1 / x^2 + 2 = 256
⇒ x^2 + 1 / x^2 = 256 - 2
⇒ x^2 + 1 / x^2 = 254
Therefore the value of x^2 + 1 / x^2 satisfying the given equations is 254.