Math, asked by loneaamir1431, 1 year ago

if x is equal to 9 + 4 under root 5 and X Y is equal to one, then 1 / X square + 1 /y square is

Answers

Answered by BhawnaAggarwalBT
26
<I >Hey here is your answer

GIVEN :-
x = 9 + 4√5
xy = 1

 \it \: to \: find \: = > \frac{1}{ {x}^{2} } + \frac{1}{ {y}^{2} } \\ \\

Let, solve the sum :-

here x = 9 + 4√5 (given). -(1)

xy = 1
putting x = 9 + 4√5 in equation:-
(9 + 4√5) y = 1

y \: = \frac{1}{9 + 4 \sqrt{5} }\: \: \: \: \: \: \: - (2) \\ \\
by rationalising method :-

y \: = \frac{1}{9 + 4 \sqrt{5} } \\ \\ \frac{1}{9 + 4 \sqrt{5} } \times \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} } \\ \\ \frac{9 - 4 \sqrt{5} }{ {(9)}^{2} - {(4 \sqrt{5}) }^{2} } \\ \\ \frac{9 - 4 \sqrt{5} }{81 - 80} \\ \\ 9 - 4 \sqrt{5}
so, y = 9 - 4√5

now :-

to solve
 \it \frac{1}{ {x}^{2} } + \frac{1}{ {y}^{2} } \\ \\
we have to find the values of 1/x and 1/y first to make question easy :-

x = 9 + 4√5
1/x = 1 / 9+4√5

by rationalising :-

 \frac{1}{x} \: = \frac{1}{9 + 4 \sqrt{5} } \\ \\ \frac{1}{9 + 4 \sqrt{5} } \times \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} } \\ \\ \frac{9 - 4 \sqrt{5} }{ {(9)}^{2} - {(4 \sqrt{5}) }^{2} } \\ \\ \frac{9 - 4 \sqrt{5} }{81 - 80} \\ \\ 9 - 4 \sqrt{5}
so, 1/x = 9 - 4√5

now y = 1 / 9+4√5 (see 2)
1/y = 9 + 4√5

now ;
Let's find the value of
 \it \frac{1}{ {x}^{2} } + \frac{1}{ {y}^{2} } \\ \\ {( \frac{1}{x} )}^{2} + {( \frac{1}{y}) }^{2} \\ \\ (9 - 4 \sqrt{5} {)}^{2} + {(9 + 4 \sqrt{5} )}^{2} \\ \\ {(9)}^{2} + {(4 \sqrt{5} )}^{2} - 2 \times 9 \times 4 \sqrt{5} + {(9)}^{2} + {(4 \sqrt{5} )}^{2} + 2 \times 9 \times 4 \sqrt{5} \\ \\ 81 + 80 - 72 \sqrt{5 } + 81 + 80 + 70 \sqrt{5} \\ \\ 81 + 80 + 81 + 80 \\ \\ \bf 322 \: answer
hope this helps you

### BE BRAINLY ###
Similar questions
Math, 7 months ago