if x is equal to 9 minus 4 root 5 find x cube minus one by x cube
Answers
Answer:
CORRECT QUESTION
x = 9 - 4√5
Answers
THE BRAINLIEST ANSWER!
x^{3}+\frac{1}{x^3}=5778
Step-by-step explanation:
We need to find x^{3}+\frac{1}{x^3}
If x=9-4\sqrt{5}
so, \frac{1}{x}=\frac{1}{9-4\sqrt{5}}
Rationalize the above
\frac{1}{x}=\frac{1}{9-4\sqrt{5}}\times \frac{9+4\sqrt{5}}{9+4\sqrt{5}}
\frac{1}{x}=\frac{9+4\sqrt{5}}{9-4\sqrt{5}(9+4\sqrt{5})}
\frac{1}{x}=\frac{9+4\sqrt{5}}{81-80}
\frac{1}{x}=9+4\sqrt{5}
(x+\frac{1}{x})^2=x^{2}+\frac{1}{x^2}+2
Put x=9-4\sqrt{5} in above
(9-4\sqrt{5}+\frac{1}{9-4\sqrt{5}})^2=x^{2}+\frac{1}{x^2}+2
(9-4\sqrt{5}+9+4\sqrt{5})^2=x^{2}+\frac{1}{(9-4\sqrt{5})^2}+2
(9+9)^2=x^{2}+\frac{1}{x^2}+2
(18)^2=x^{2}+\frac{1}{x^2}+2
324=x^{2}+\frac{1}{x^2}+2
subtract both the sides by 2,
324-2=x^{2}+\frac{1}{x^2}
322=x^{2}+\frac{1}{x^2}
Then
x^{3}+\frac{1}{x^3}=(x+\frac{1}{x})(x^{2}+\frac{1}{x^2}-x\times \frac{1}{x})
x^{3}+\frac{1}{x^3}=(x+\frac{1}{x})(x^{2}+\frac{1}{x^2}-1)
x^{3}+\frac{1}{x^3}=(18)(322-1)
x^{3}+\frac{1}{x^3}=(18)(321)
x^{3}+\frac{1}{x^3}=5788