Math, asked by bhagwatichandra, 1 year ago

if x is equal to a sec theta cos theta Y is equal to b sec theta sin theta and Z is equal to c tan theta show that x square Upon A square + Y square upon B square minus Z Square upon c square is equal to 1

Answers

Answered by Shubhendu8898
51
hope this will help you .........
Attachments:
Answered by aquialaska
15

Answer:

Given: x=a\,sec\theta\,cos\theta\:,\:y=b\,sec\theta\,sin\theta\:\:and\:\:z=c\,tan\theta

To show: \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1

Proof,

Consider

x=a\,sec\theta\,cos\theta\\\frac{x}{a}=\frac{1}{cos\theta}\times cos\theta\\\\\frac{x}{a}=1\\\\ Squaring\,both\,sides,\,we\,get\\\\\frac{x^2}{a^2}=1 ...................... (1)

y=b\,sec\theta\,sin\theta\\\frac{y}{b}=\frac{1}{cos\theta}\times sin\theta\\\\\frac{y}{b}=tan\theta\\\\ Squaring\,both\,sides,\,we\,get\\\\\frac{y^2}{b^2}=tan^2\theta ...................... (2)

z=c\,tan\theta\\\frac{z}{c}=tan\theta\\\\\ Squaring\,both\,sides,\,we\,get\\\\\frac{z^2}{c^2}=tan^2\theta ...................... (3)

Now consider,

\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}\\\\=\,1\,+\,tan^2\theta\,-\,tan^2\theta\:(from\,(1),(2),(3))\\\\=\,1

Hence Proved.

Similar questions