Math, asked by gauravoswal4497, 11 months ago

if x is equal to a sin theta and Y is equal to B tan theta then prove that a square upon x square minus b square upon y square is equal to 1​

Answers

Answered by aniruddhaanturlikar
6

Answer:

Step-by-step explanation:

x=a sin theta : y=b tan theta.. (Given)

L.H.S. = a²/x² - b²/y² = a²/(a sin theta)² - b²/(b tan theta)²

a² and b² are cancelled and then we get 

1/sin² theta - 1/sin² theta/cos² theta ...[∴ tan theta = sin theta/cos theta]

1/sin² theta - cos² theta/sin² theta

= (1-cos² theta)/sin² theta  ....[∴ sin² theta + cos² theta = 1]

sin² theta/sin² theta = 1

= R.H.S

⇒ a²/x² - b²/y²

Hence proved.

Similar questions