if x is equal to R sin theta cos Y equal to R sin theta sin Z = 2r cos theta prove that AC square equal to X square + Y square + Z Square
Answers
Answered by
6
Given: The values X = R x sinθ x cosΦ, Y = R x sinθ x sinΦ, Z = R x cosθ
To Find: Prove that X² + Y² + Z² = R²
Solution:
- Now we have given the values:
X = R x sinθ x cosΦ, Y = R x sinθ x sinΦ, Z = R x cosθ
- Squaring each term, we get:
X² = R² x sin²θ x cos²Φ, Y² = R² x sin²θ x sin²Φ, Z² = R² x cos²θ
- Adding them all, we get:
X² + Y² + Z² = R² x sin²θ x cos²Φ + R² x sin²θ x sin²Φ + R² x cos²θ
X² + Y² + Z² = R² x sin²θ (cos²Φ + sin²Φ ) + R² x cos²θ
- Now we know that sin^2 x + cos^2 x = 1, so applying this, we get:
X² + Y² + Z² = R² x sin²θ (1) + R² x cos²θ
- Taking R^2 common, we get:
X² + Y² + Z² = R² x (sin²θ + cos²θ)
X² + Y² + Z² = R² x 1
X² + Y² + Z² = R² Hence proved
Answer:
So in solution part, we proved that X² + Y² + Z² = R²
Answered by
1
solution is x²+y²+z²=r²
Similar questions