Math, asked by rautela123, 1 year ago

if x is equal to root 3 + root 2 upon root 3 - root 2 and Y is equal to root 3 - root 2 upon root 3 + root 2 find the value of x square + Y square

Answers

Answered by richapariya121pe22ey
2

x =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  } \\ y =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +   \sqrt{2}  }  \\  {x}^{2}  +  {y}^{2}  = ( \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} } )^{2}  +   ({ \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} } })^{2}

  =  \frac{ {( \sqrt{3} +  \sqrt{2})  }^{2}  {( \sqrt{3}  +  \sqrt{2}) }^{2} +  {( \sqrt{3}  -  \sqrt{2} )}^{2} {( \sqrt{3}  -  \sqrt{2}) }^{2}    }{ {( \sqrt{3} -  \sqrt{2} )}^{2}  {( \sqrt{3} +  \sqrt{2} ) }^{2} }  \\  =  \frac{ {( \sqrt{3}  +  \sqrt{2}) }^{4} +  {( \sqrt{3}  -  \sqrt{2} ) }^{4}  }{ {(( \sqrt{3}  -  \sqrt{2})( \sqrt{3} +  \sqrt{2}))   }^{2} }  \\  =  \frac{ {( \sqrt{3}  +  \sqrt{2}) }^{4} +  {( \sqrt{3}  -  \sqrt{2} ) }^{4}  }{  {(3 - 4)}^{2}  }  \\ =  \frac{ {( \sqrt{3}  +  \sqrt{2}) }^{4} +  {( \sqrt{3}  -  \sqrt{2} ) }^{4}  }{  1  }  \\

 {(a + b)}^{4}  = {a}^{4}  + 4 {a}^{3} b  + 6  {a}^{2}  {b}^{2}  + 4a {b}^{3} +  {b}^{4}   \\  {( \sqrt{3}  +  \sqrt{2} )}^{4}  = { (\sqrt{3} )}^{4}  + 4 {( \sqrt{3} )}^{3} ( \sqrt{2}  )+ 6  {( \sqrt{3} )}^{2}  {( \sqrt{2}) }^{2}  + 4 (\sqrt{3})  {( \sqrt{2} )}^{3} +  { \sqrt{2} }^{4}   \\  = 9 + (4 \times 3 \sqrt{3}  \times  \sqrt{2}  + (6 \times 3 \times 2) + (4 \times  \sqrt{3}  \times 2 \sqrt{2} ) + 4 \\  = 9 + 12 \sqrt{6}  + 36 + 8 \sqrt{6}  + 4 \\  = 49 + 20 \sqrt{6}

 {(a  -  b)}^{4}  = {a}^{4}   -  4 {a}^{3} b  + 6  {a}^{2}  {b}^{2}   -  4a {b}^{3} +  {b}^{4}   \\  {( \sqrt{3}   -   \sqrt{2} )}^{4}  = { (\sqrt{3} )}^{4}   - 4 {( \sqrt{3} )}^{3} ( \sqrt{2}  )+ 6  {( \sqrt{3} )}^{2}  {( \sqrt{2}) }^{2}   -  4 (\sqrt{3})  {( \sqrt{2} )}^{3} +  {( \sqrt{2}) }^{4}   \\  = 9  -  (4 \times 3 \sqrt{3}  \times  \sqrt{2} ) + (6 \times 3 \times 2)  - (4 \times  \sqrt{3}  \times 2 \sqrt{2} ) + 4 \\  = 9  -  12 \sqrt{6}  + 36  -  8 \sqrt{6}  + 4 \\  = 49  -  20 \sqrt{6}

= {( \sqrt{3} +  \sqrt{2} ) }^{4}  +  {( \sqrt{3} -  \sqrt{2} ) }^{4}  \\  = (49 + 20 \sqrt{6} ) + (49 - 20 \sqrt{6} ) \\  = 49 + 20 \sqrt{6}  + 49 - 20 \sqrt{6}  \\   = 49 + 49 \\  = 98

Hope you find this helpful.

If you find it helpful, please mark it as brainliest.

Similar questions