Math, asked by Kanishkai, 1 year ago

if x is equal to root 5 + 1 upon root 5 minus 1 and Y is equal to root 5 minus 1 upon root 5 + 1 then find the value of x square + Y square

Answers

Answered by anjali3294
35
Hope it helps you
Please mark it as brainlist
Attachments:

Kanishkai: correct
Kanishkai: u r a genius
anjali3294: thanks
Answered by aquialaska
16

Answer:

x² + y² = 7

Step-by-step explanation:

Give values of x and y are

x=\frac{\sqrt{5}+1}{\sqrt{5}-1}\:\:and\:\:y=\frac{\sqrt{5}-1}{\sqrt{5}+1}

To find: x² + y²

first we find value of x and y by rationalizing the denominator

Consider,

x=\frac{\sqrt{5}+1}{\sqrt{5}-1}

x=\frac{\sqrt{5}+1}{\sqrt{5}-1}\times\frac{\sqrt{5}+1}{\sqrt{5}+1}

x=\frac{(\sqrt{5}+1)^2}{(\sqrt{5}-1)(\sqrt{5}+1)}

x=\frac{(\sqrt{5})^2+1+2\times\sqrt{5}}{(\sqrt{5})^2-1}

x=\frac{5+1+2\times\sqrt{5}}{5-1}

x=\frac{6+2\times\sqrt{5}}{4}

x=\frac{3+\sqrt{5}}{2}

y=\frac{\sqrt{5}-1}{\sqrt{5}+1}

x=\frac{\sqrt{5}-1}{\sqrt{5}+1}\times\frac{\sqrt{5}-1}{\sqrt{5}-1}

x=\frac{(\sqrt{5}-1)^2}{(\sqrt{5}+1)(\sqrt{5}-1)}

x=\frac{(\sqrt{5})^2+1-2\times\sqrt{5}}{(\sqrt{5})^2-1}

x=\frac{5+1-2\times\sqrt{5}}{5-1}

x=\frac{6-2\times\sqrt{5}}{4}

x=\frac{3-\sqrt{5}}{2}

Finally Consider,

x^2+y^2

=(\frac{3+\sqrt{5}}{2})^2+(\frac{3-\sqrt{5}}{2})^2

=\frac{(3+\sqrt{5})^2}{4}+\frac{(3-\sqrt{5})^2}{4}

=\frac{9+(\sqrt{5})^2+2\times3\times\sqrt{5}+9+(\sqrt{5})^2-2\times3\times\sqrt{5}}{4}

=\frac{9+5+9+5}{4}

=\frac{28}{4}

=7

Therefore, x² + y² = 7

Similar questions