Math, asked by Kunjumoni3928, 1 year ago

If x is equal to root 5 + 2 then prove that x square + 1 divided by x square is equal to 18

Answers

Answered by LovelyG
15

Solution:

Given that ;

x = √5 + 2

Now, find the value of 1/x.

\sf \implies \frac{1}{x} = \frac{1}{ \sqrt{5} + 2} \\ \\ \sf \implies \frac{1}{x} = \frac{1}{ \sqrt{5} + 2 } \times \frac{ \sqrt{5} - 2 }{ \sqrt{5} - 2 } \\ \\ \sf \implies \frac{1}{x} = \frac{ \sqrt{5} - 2 }{ {( \sqrt{5}) }^{2} - {(2)}^{2} } \\ \\ \sf \implies \frac{1}{ x } = \frac{ \sqrt{5} - 2}{5 - 4} \\ \\ \sf \implies \frac{1}{x} = \sqrt{5} - 2

So, find x + (1/x).

\sf \implies x + \frac{1}{x} = \sqrt{5} + 2 + \sqrt{5} - 2 \\ \\ \sf \implies x + \frac{1}{x} = 2 \sqrt{5}

On squaring both sides ;

\sf \implies (x + \frac{1}{x} ) {}^{2} = (2 \sqrt{5} ) {}^{2} \\ \\ \sf \implies {x}^{2} + \frac{1}{ {x}^{2} } + 2 = 20 \\ \\ \sf \implies {x}^{2} + \frac{1}{ {x}^{2} } = 20 - 2 \\ \\ \boxed{ \red{ \bf \therefore \: {x}^{2} + \frac{1}{ {x}^{2} } = 18}}

Hence, it is proved.

Similar questions