Math, asked by jampalamanishan, 1 year ago

if x is equal to under root 3 + under root 2 upon under root 3 minus under root 2 and Y is equal to under root 3 minus under root 2 upon under root 3 + under root 2 then find the value of x square+ Y square + x y

Answers

Answered by vaduz
140

Answer:99


Step-by-step explanation:

as given

x= \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\\\\x^{2}=(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}})^{2}\\\\=\frac{3+2+2\sqrt{6}}{3+2-2\sqrt{6}}\\\\=\frac{5+2\sqrt{6}}{5-2\sqrt{6}}

and

y= \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\\\\y^{2}=(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}})^{2}\\\\=\frac{3+2-2\sqrt{6}}{3+2+2\sqrt{6}}\\\\=\frac{5-2\sqrt{6}}{5+2\sqrt{6}}

and xy =1

so the value of

x^{2}+y^{2}+xy\\\\=\frac{5+2\sqrt{6}}{5-2\sqrt{6}}+\frac{5-2\sqrt{6}}{5+2\sqrt{6}}+1\\\\=\frac{(5+2\sqrt{6})^{2}+(5-2\sqrt{6})^{2}}{(5-2\sqrt{6})*(5+2\sqrt{6})}+1\\\\=\frac{2(25+24)}{25-24}+1\\\\=98+1\\\\=99


Answered by wagonbelleville
57

Answer:

x^2+y^2+xy=99

Step-by-step explanation:

We are given that,

x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}

Now, it is required to find the value of x^2+y^2+xy

So, we have,

x^2=(\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}})^2\\\\\x^2=\dfrac{3+2+2\sqrt{6}}{3+2-2\sqrt{6}}\\\\\x^2=\dfrac{5+2\sqrt{6}}{5-2\sqrt{6}}\\\\\x^2=\dfrac{5+2\sqrt{6}}{5-2\sqrt{6}}\times \dfrac{5+2\sqrt{6}}{5+2\sqrt{6}}\\\\\x^2=\dfrac{(5+2\sqrt{6})^2}{25-4\times 6}\\\\\x^2=\dfrac{25+4\times 6+20\sqrt{6}}{25-24}\\\\x^2=25+24+20\sqrt{6}\\\\x^2=49+20\sqrt{6}

Also, we have,

y^2=(\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}})^2\\\\\y^2=\dfrac{3+2-2\sqrt{6}}{3+2+2\sqrt{6}}\\\\\y^2=\dfrac{5-2\sqrt{6}}{5+2\sqrt{6}}\\\\\y^2=\dfrac{5-2\sqrt{6}}{5+2\sqrt{6}}\times \dfrac{5-2\sqrt{6}}{5-2\sqrt{6}}\\\\\y^2=\dfrac{(5-2\sqrt{6})^2}{25-4\times 6}\\\\\y^2=\dfrac{25+4\times 6-20\sqrt{6}}{25-24}\\\\y^2=25+24-20\sqrt{6}\\\\y^2=49-20\sqrt{6}

Further, we have,

xy=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}

i.e. xy=1

Finally, we get,

x^2+y^2+xy=49+20\sqrt{6}+49-20\sqrt{6}+1

i.e.  x^2+y^2+xy=49+20\sqrt{6}+49-20\sqrt{6}+1

i.e. x^2+y^2+xy=49+49+1

i.e. x^2+y^2+xy=99

Thus, the required value is 99.

Similar questions