Math, asked by Priyanshi5885, 11 months ago

If x is equal to under root 5 + under root 3 upon under root 5 minus under root 3 and Y is equal to under root 5 minus under root 3 upon under root 5 + under root 3 find the value of x square + Y square

Answers

Answered by fab13
4

Answer:

x  \\ =   \frac{ \sqrt{5} +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \\  =  \frac{( \sqrt{5}  +  \sqrt{3}) {}^{2}  }{( \sqrt{5}  -  \sqrt{3})( \sqrt{5}   +  \sqrt{3}) }  \\  =  \frac{ (\sqrt{5}) {}^{2}  +  (\sqrt{3})  {}^{2}  + 2 \sqrt{5}  \times  \sqrt{3}  }{( \sqrt{5})^{2}   - ( \sqrt{3}) {}^{2}  }  \\  =  \frac{5 + 3 + 2 \sqrt{15} }{5 - 3}  \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  = 4 +  \sqrt{15}

y \\  =  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }  \\  =  \frac{( \sqrt{5} -  \sqrt{3}  ) {}^{2} }{( \sqrt{5}  +  \sqrt{3} )( \sqrt{5} -  \sqrt{3})  }  \\  =  \frac{( \sqrt{5} ) {}^{2} +  (\sqrt{3})  {}^{2} - 2 \sqrt{5}  \times  \sqrt{3}   }{( \sqrt{5}) {}^{2}  - ( \sqrt{3} ) {}^{2}  }  \\  =  \frac{5 + 3 - 2 \sqrt{15} }{5 - 3}  \\  =  \frac{8 - 2 \sqrt{15} }{2}  \\  =  4 -  \sqrt{15}

now,

 {x}^{2}  +  {y}^{2}  \\  = (4 +  2\sqrt{15} ) {}^{2}  + (4 -  2 \sqrt{15} ) {}^{2}  \\  = 2( {4}^{2}  + (2 \sqrt{15} ) {}^{2} )  \\  = 2(16 + 60) \\  = 2 \times 76 \\  = 152

Similar questions