Math, asked by saipoojitha, 1 year ago

if x is equals to 2 + root 3 then find x power 4 + 1 by x power 4

Answers

Answered by gaurav2013c
43

x = 2 +  \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\  \\   \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\   \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{x}  = 2 -  \sqrt{3}


Now,

x + 1/x = 2 + root3 + 2 - root3

=> x + 1/x = 4

On squaring both sides, we get

x^2 + 1/x^2 + 2(x)(1/x) = 16

=> x^2 + 1/x^2 + 2 = 16

=> x^2 + 1/x^2 = 14

Again, on squaring both sides, we get

x^4 + 1/x^4 + 2 (x^2) (1/x^2) = 196

=> x^4 + 1/x^4 + 2 = 196

=> x^4 + 1/x^4 = 194
Answered by aquialaska
15

Answer:

Value of given expression is 194.

Step-by-step explanation:

Given: x = 2 + √3

To find: x^4+\frac{1}{x^4}

Consider,

x² = ( 2 + √3 )² = 2² + (√3)² + 2(2)(√3) = 4 + 3 + 4√3 = 7 + 4√3

x^4=(7+4\sqrt{3})^2=7^2+(4\sqrt{3})^2+2(7)(4\sqrt{3})=49+48+56\sqrt{3}=97+56\sqrt{3}

\frac{1}{x^4}=\frac{1}{97+56\sqrt{3}}=\frac{1}{97+56\sqrt{3}}\times\frac{97-56\sqrt{3}}{97-56\sqrt{3}}=\frac{97-56\sqrt{3}}{(97)^2-(56\sqrt{3})^2}=\frac{97-56\sqrt{3}}{9409-9408}=97-56\sqrt{3}

So,  x^4+\frac{1}{x^4}=97+56\sqrt{3}+97-56\sqrt{3}=97+97=194

Therefore, Value of given expression is 194.

Similar questions