if x is equals to 2 + under root 3 find the value of x cube + 1 by x cube
Answers
Answered by
10
HELLO DEAR,
given that:-
x = (2 + √3)
on cubing both side,
we get,
x³ = [8 + 3√3 + 6√3(2 + √3)]
x³ = (8 + 3√3 + 12√3 + 18)
x³ = (26 + 15√3)---------(1)
now,
1/x³ = 1/(26 + 15√3) × (26 - 15√3)/(26 - 15√3)
1/x³ = (26 - 15√3)/(676 - 675)
1/x³ = (26 - 15√3)----------(2)
NOW,
adding-----(1) & ------(2)
we get,
(x³ + 1/x³) = (26 + 15√3) + (26 - 15√3)
(x³ + 1/x³) = (26 + 26) + (15√3 - 15√3)
(x³ + 1/x³) = 52
I HOPE ITS HELP YOU DEAR,
THANKS
given that:-
x = (2 + √3)
on cubing both side,
we get,
x³ = [8 + 3√3 + 6√3(2 + √3)]
x³ = (8 + 3√3 + 12√3 + 18)
x³ = (26 + 15√3)---------(1)
now,
1/x³ = 1/(26 + 15√3) × (26 - 15√3)/(26 - 15√3)
1/x³ = (26 - 15√3)/(676 - 675)
1/x³ = (26 - 15√3)----------(2)
NOW,
adding-----(1) & ------(2)
we get,
(x³ + 1/x³) = (26 + 15√3) + (26 - 15√3)
(x³ + 1/x³) = (26 + 26) + (15√3 - 15√3)
(x³ + 1/x³) = 52
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions