Math, asked by raikwarmanisha218, 10 months ago

if x is equals to 5 minus root 24 then find x sqrt +1/x sqrt ​

Answers

Answered by ashmitkumar2
4

Step-by-step explanation:

x = 5 -   \sqrt{24}

to find:-

 {x}^{2}  +  \frac{1}{ {x}^{2} }

solution:-

 \frac{1}{x}  =    \frac{1}{5 -  \sqrt{24} }    \\  \\  \frac{1}{x}  =  \frac{1}{5 -  \sqrt{24} }  \times  \frac{5 +  \sqrt{24} }{5 +  \sqrt{24} }   \\  \\  =  \frac{5 +  \sqrt{24} }{ {5 }^{2}  -  {( \sqrt{24)} }^{2} }   = 5 +  \sqrt{24}

NOW,

 {x}^{2}  +   \frac{1}{ {x}^{2} }  =  {(x +  \frac{1}{x} )}^{2}  - 2 \times x \times  \frac{1}{x}

so,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = (5 +  \sqrt{24 }  + 5 -  \sqrt{24} )  > 2- 2 \\  = 100 - 2 = 98

Similar questions