Math, asked by ambner, 10 months ago

if x is equals to 6 minus 4 root 2 then find root x + 1 by root x ​

Answers

Answered by Anonymous
0

Answer:

 \sqrt{x}  +  \frac{1}{ \sqrt{x} } = 3 +  \frac{1}{ \sqrt{2} }    -  \sqrt{2}

Step-by-step explanation:

x = 6 - 4 \sqrt{2}  \\ x = ( \sqrt{2} )^{2}   -  (2 \times  \sqrt{2}  \times 2) + (2)^{2}  \\ x = (2 -  \sqrt{2} )^{2} \\  \sqrt{x}  = 2 -  \sqrt{2}

hence,

 \frac{1}{ \sqrt{x} }  =  \frac{1}{2 -  \sqrt{2} }  \\  \frac{1}{ \sqrt{x} }  =  \frac{(2 +  \sqrt{2} )}{(2 -  \sqrt{2} ) \times (2 +  \sqrt{2} )}  \\  \frac{1}{ \sqrt{x} }   =  \frac{(2 +  \sqrt{2} )}{2}  \\ \frac{1}{ \sqrt{x} } = 1 +  \frac{1}{ \sqrt{2} }

Adding both we get

 \sqrt{x}  +  \frac{1}{ \sqrt{x} } = 3 +  \frac{1}{ \sqrt{2} }    -  \sqrt{2}

PLEASE MARK IT AS BRAINLIEST IF YOU LIKE MY ANSWER

Similar questions