Math, asked by raj1064, 1 year ago

if x is equals to 7 + 4 root 3 find the value of bracket x cube + 1 by x cube bracket

Answers

Answered by gullunaz2811p76d7t
24
Here's your answer...
Attachments:
Answered by pinquancaro
30

Answer:

The required value is (x^3+\frac{1}{x^3})=2702

Step-by-step explanation:

Given : x=7+4\sqrt3

To find : (x^3+\frac{1}{x^3})

Solution :

We know, x=7+4\sqrt3 .....(1)

\frac{1}{x}=\frac{1}{7+4\sqrt3}

Rationalizing,

\frac{1}{x}=\frac{1}{7+4\sqrt3}\times \frac{7-4\sqrt3}{7-4\sqrt3}

\frac{1}{x}=\frac{7-4\sqrt3}{7^2-(4\sqrt3)^2}

\frac{1}{x}=\frac{7-4\sqrt3}{49-48}

\frac{1}{x}=7-4\sqrt3 ....(2)

Cubing equation (1),

x^3=(7+4\sqrt3)^3

x^3=(7)^3+(4\sqrt3)^3+3(7)^2(4\sqrt3)+3(7)(4\sqrt3)^2

x^3=343+192\sqrt3+588\sqrt3+1008

x^3=1351+780\sqrt3 ......(3)

Cubing equation (2),

\frac{1}{x^3}=(7-4\sqrt3)^3

\frac{1}{x^3}=(7)^3+(-4\sqrt3)^3+3(7)^2(-4\sqrt3)+3(7)(-4\sqrt3)^2

\frac{1}{x^3}=343-192\sqrt3-588\sqrt3+1008

\frac{1}{x^3}=1351-780\sqrt3 ......(4)

Adding (3) and (4),

x^3+\frac{1}{x^3}=1351+780\sqrt3+1351-780\sqrt3

x^3+\frac{1}{x^3}=2702

Therefore, The required value is (x^3+\frac{1}{x^3})=2702

Similar questions