Math, asked by sam304, 1 year ago

if x is equals to 9 + 4 root 5 find the value of root x minus one by root x

Answers

Answered by siddhartharao77
290

Given x = 9 + 4√5.

⇒ 4 + 5 + 2 * 2 * √5

⇒ (2)^2 + (√5)^2 + 2 * (2) * (√5)

It is in the form of a^2 + b^2 + 2ab = (a + b)^2.

⇒ (2 + √5)^2.

So, x = (2 + √5)^2.

Then, √x = (2 + √5).

Now,

= > \frac{1}{\sqrt{x}}

= > \frac{1}{(2 + \sqrt{5})} * \frac{(2 - \sqrt{5})}{(2 - \sqrt{5})}

= > \frac{(2 - \sqrt{5})}{(2)^2 - (\sqrt{5})^2}

= > \frac{2 - \sqrt{5}}{4 - 5}

= > \frac{2 - \sqrt{5}}{-1}

= > \sqrt{5} - 2



Hence,

⇒ √x - (1/√x)

⇒ (2 + √5) - (√5 - 2)

⇒ 2 + √5 - √5 - 2

⇒ 4.


Therefore, the value of √x - (1/√x) = 4.



Hope this helps!

Answered by mindfulmaisel
165

"\sqrt { x } - \frac { 1 } { \sqrt { x } } = 4

Given:

x = 9 + 4 \sqrt { 5 }

To find:

\sqrt { x } - \frac { 1 } { \sqrt { x } }

Solution:

x = 9 + 4 \sqrt { 5 }

= 4 + 5 + 2 \times 2 \times \sqrt { 5 }

= ( 2 ) ^ { 2 } + 2 \times 2 \times \sqrt { 5 } + ( \sqrt { 5 } ) ^ { 2 }

= ( 2 + \sqrt { 5 } ) ^ { 2 }

\therefore \sqrt { x } = 2 + \sqrt { 5 } (neglecting the negative sign)

\frac { 1 } { \sqrt { x } } = \frac { 1 } { 2 + \sqrt { 5 } }

= \frac { 2 - \sqrt { 5 } } { ( 2 + \sqrt { 5 ) } ( 2 - \sqrt { 5 } ) }

= \frac { 2 - \sqrt { 5 } } { \left\{ ( 2 ) ^ { 2 } - ( \sqrt { 5 } ) ^ { 2 } \right\} }

= \frac { 2 - \sqrt { 5 } } { 4 - 5 }

= \frac { 2 - \sqrt { 5 } } { - 1 }

= \sqrt { 5 } - 2

\sqrt { x } - \frac { 1 } { \sqrt { x } } = 2 + \sqrt { 5 } - ( \sqrt { 5 } - 2 )

= 2 + \sqrt { 5 } - \sqrt { 5 } + 2

\sqrt { x } - \frac { 1 } { \sqrt { x } } = 4"

Similar questions