Math, asked by vikas5551, 1 year ago

if x is equals to root 3 + 1 / root 3 - 1, Y is equals to root 3 minus 1 by root 3+1 find the value of x2 +xy-y2​

Answers

Answered by BrainlyQueen01
25
\huge{\underline{\bold {Solution :}}}

\sf x = \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1} \\ \\ \sf x = \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1} \times \frac{ \sqrt{3 + 1} }{ \sqrt{3} + 1 } \\ \\ \sf x = \frac{ (\sqrt{3} + 1)^{2}}{(\sqrt{3}) {}^{2} - (1)^{2} } \\ \\ \sf x = \frac{( \sqrt{3})^{2} + 1^{2} + 2 \times \sqrt{3} \times 1 }{3 - 1} \\ \\ \sf x = \frac{3 + 1 + 2 \sqrt{3} }{2} \\ \\ \sf x = \frac{4 + 2 \sqrt{3} }{2} \\ \\ \sf x = \frac{2(2 + \sqrt{3})}{2} \\ \\ \boxed{\bf x = 2 + \sqrt{3}}

\sf Now, \: again \: find \: value \: of \: y

\sf y = \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1} \\ \\ \sf y = \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1} \times \frac{ \sqrt{3} - 1}{ \sqrt{3} - 1 } \\ \\ \sf y = \frac{ (\sqrt{3} - 1)^{2}}{(\sqrt{3}) {}^{2} - (1)^{2} } \\ \\ \sf y = \frac{( \sqrt{3})^{2} + 1^{2} - 2 \times \sqrt{3} \times 1 }{3 - 1} \\ \\ \sf y = \frac{3 + 1 - 2 \sqrt{3} }{2} \\ \\ \sf y = \frac{4 - 2 \sqrt{3} }{2} \\ \\ \sf y = \frac{2(2 - \sqrt{3})}{2} \\ \\ \boxed{\bf y = 2 - \sqrt{3}}

\underline{\bf To \: find \: value \: of \: x^{2} + xy - y^{2} ;}

\bf x^{2} +xy - y^{2} \\ \\ \sf (2 + \sqrt{3} ){}^{2} + (2 + \sqrt{3})(2 - \sqrt{3}) - (2 - \sqrt{3} ) {}^{2} \\ \\ \sf 4 + 3 + 4 \sqrt{3} + 4 - 3 - 4 - 3 + 4 \sqrt{3} \\ \\ \sf 11 + 4 \sqrt{3} - 10 + 4 \sqrt{3} \\ \\ \boxed{ \underline{ \red{ \bf 1 + 8 \sqrt{3} }}}

Hence, the answer is found.
Answered by krohit68272
0

Step-by-step explanation:

\huge{\underline{\bold {Solution :}}}

Solution:

\begin{gathered}\sf x = \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1} \\ \\ \sf x = \frac{ \sqrt{3} + 1 }{ \sqrt{3} - 1} \times \frac{ \sqrt{3 + 1} }{ \sqrt{3} + 1 } \\ \\ \sf x = \frac{ (\sqrt{3} + 1)^{2}}{(\sqrt{3}) {}^{2} - (1)^{2} } \\ \\ \sf x = \frac{( \sqrt{3})^{2} + 1^{2} + 2 \times \sqrt{3} \times 1 }{3 - 1} \\ \\ \sf x = \frac{3 + 1 + 2 \sqrt{3} }{2} \\ \\ \sf x = \frac{4 + 2 \sqrt{3} }{2} \\ \\ \sf x = \frac{2(2 + \sqrt{3})}{2} \\ \\ \boxed{\bf x = 2 + \sqrt{3}}\end{gathered}

x=

3

−1

3

+1

x=

3

−1

3

+1

×

3

+1

3+1

x=

(

3

)

2

−(1)

2

(

3

+1)

2

x=

3−1

(

3

)

2

+1

2

+2×

3

×1

x=

2

3+1+2

3

x=

2

4+2

3

x=

2

2(2+

3

)

x=2+

3

\sf Now, \: again \: find \: value \: of \: y Now,againfindvalueofy

\begin{gathered}\sf y = \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1} \\ \\ \sf y = \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1} \times \frac{ \sqrt{3} - 1}{ \sqrt{3} - 1 } \\ \\ \sf y = \frac{ (\sqrt{3} - 1)^{2}}{(\sqrt{3}) {}^{2} - (1)^{2} } \\ \\ \sf y = \frac{( \sqrt{3})^{2} + 1^{2} - 2 \times \sqrt{3} \times 1 }{3 - 1} \\ \\ \sf y = \frac{3 + 1 - 2 \sqrt{3} }{2} \\ \\ \sf y = \frac{4 - 2 \sqrt{3} }{2} \\ \\ \sf y = \frac{2(2 - \sqrt{3})}{2} \\ \\ \boxed{\bf y = 2 - \sqrt{3}}\end{gathered}

y=

3

+1

3

−1

y=

3

+1

3

−1

×

3

−1

3

−1

y=

(

3

)

2

−(1)

2

(

3

−1)

2

y=

3−1

(

3

)

2

+1

2

−2×

3

×1

y=

2

3+1−2

3

y=

2

4−2

3

y=

2

2(2−

3

)

y=2−

3

\underline{\bf To \: find \: value \: of \: x^{2} + xy - y^{2} ;}

Tofindvalueofx

2

+xy−y

2

;

\begin{gathered}\bf x^{2} +xy - y^{2} \\ \\ \sf (2 + \sqrt{3} ){}^{2} + (2 + \sqrt{3})(2 - \sqrt{3}) - (2 - \sqrt{3} ) {}^{2} \\ \\ \sf 4 + 3 + 4 \sqrt{3} + 4 - 3 - 4 - 3 + 4 \sqrt{3} \\ \\ \sf 11 + 4 \sqrt{3} - 10 + 4 \sqrt{3} \\ \\ \boxed{ \underline{ \red{ \bf 1 + 8 \sqrt{3} }}}\end{gathered}

x

2

+xy−y

2

(2+

3

)

2

+(2+

3

)(2−

3

)−(2−

3

)

2

4+3+4

3

+4−3−4−3+4

3

11+4

3

−10+4

3

1+8

3

Hence, the answer is found.

Similar questions