Math, asked by md13, 1 year ago

If x is not equal to zero, what is the value
of 4(3x)^2 / (2x)^2​

Answers

Answered by singhsahil140404
15

Answer:

9

Step-by-step explanation:

4(3x)^2/(2x)^2

=4(9x^2)/4x^2

=36x^2/4x^2

=9

Answered by pulakmath007
6

\displaystyle \sf{ \frac{4 {(3x)}^{2} }{ {(2x)}^{2} }   } = 9

Given :

\displaystyle \sf{ \frac{4 {(3x)}^{2} }{ {(2x)}^{2} }   } \:  \: , \: x \ne \: 0

To find :

Simplify the given expression

Formula :

 \displaystyle \sf{\frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{ \frac{4 {(3x)}^{2} }{ {(2x)}^{2} }   }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{ \frac{4 {(3x)}^{2} }{ {(2x)}^{2} }   }

\displaystyle \sf{ =  \frac{4  \times {(3x)}^{2} }{ {(2x)}^{2} }   }

\displaystyle \sf{  = \frac{4  \times 9{x}^{2} }{ 4{x}^{2} }   }

\displaystyle \sf{  = \frac{4  \times 9}{ 4}   } \times  {x}^{2 - 2} \:  \:  \: \bigg[ \:  \because \:\frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}  \bigg]

 \sf = 9 \times  {x}^{0}

 \sf = 9 \times 1

 \sf = 9

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

2. If 2x× 4x=(8)1/3 × (32)1/5 ,then find the value of x

https://brainly.in/question/14155738

#SPJ3

Similar questions