Math, asked by yupop7op, 4 months ago

If x is not equals to 0 and x+1/x=2; then show that:-
x^2+1/x^2=x^3+1/x^3=x^4+1/x^4​

Answers

Answered by anindyaadhikari13
3

Required Answer:-

Question:

  • If x ≠ 0 and x + 1/x = 2, prove that x² + 1/x² = x³ + 1/x³ = x⁴ + 1/x⁴

Proof:

Given that,

➡ x + 1/x = 2

➡ (x² + 1)/x = 2

➡ x² + 1 = 2x

➡ x² - 2x + 1 = 0

➡ (x)² - 2 × (x) × (1) + (1)² = 0

➡ (x - 1)² = 0

On solving, we get x = 1

Therefore, x² + 1/x²

= (1)² + 1/(1)²

= 2

Similarly,

x³ + 1/x³ = 2 and x⁴ + 1/x⁴ = 2

Therefore,

➡ x² + 1/x² = x³ + 1/x³ = x⁴ + 1/x⁴ = 2 (Proved)

Answered by MissUnwanted
7

{ \huge  \color{red}{\underline{ \underline {\rm \color{black}{Given}}}} : }

  \large\sf \:  x +  \frac{1}{x}  = 2

 {\large {\underline{ \underline{ \rm {To \:  show \: that }}} : }}

 \sf  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {x}^{4}  +  \frac{1}{  {x}^{4}  }

{ \huge \color{blue}{ \underline {\underline{ \rm \color{black}{Solution}}}}:}

Squaring above equation's both sides

 \sf(x +  \frac{1}{x}  {)}^{2}  = ( {2})^{2} ....(i)

We know the identity= \sf{(a + b {)}^{2}  =  {a}^{2} +  {b}^{2}   + 2(ab)}

 \rightarrow \sf ({x})^{2}  + ( \frac{1}{x}  {)}^{2}  + 2(x. \frac{1}{x} ) = (  {2})^{2}

 \sf \rightarrow {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \cancel{x}. \frac{1}{ \cancel{ x} } = 4

 \sf \rightarrow {x}^{2}  +  \frac{1}{ {x}^{2} }  = 4 - 2 \\  \\  \implies \sf  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2....(ii)

Now, cubing both the sides

 \sf(x +  \frac{1}{x}  {)}^{3}  =  ({2})^{3}

We know the identity= \sf(a + b {)}^{3}  =  ({a})^{3}  +  ({b})^{2}  + 3(ab)(a + b)

 \sf \rightarrow( {x})^{3}  + ( \frac{1}{x}  {)}^{3}  + 3 \cancel x. \frac{1}{ \cancel x} (x +  \frac{1}{x} ) = ( {2})^{3}

 \rightarrow \sf {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 2 = 8

\rightarrow\sf{x}^{3}+\frac{1}{x}^{3}=2

Now squaring (i) and (ii)

\rightarrow\sf({x}^{2}+\frac{1}{x}^{2})={2}^{2}

\sf\rightarrow{{x}^{2}}^{2}+\frac{{(1)}^{2}}{{x}^{2}}+2\cancel{x}^{2}.\frac{1}{x}^{2}=4

\sf\rightarrow {x}^{4}+\frac{1}{{x}^{4}}=4-2

\rightarrow\sf{x}^{4}+\frac{1}{{x}^{4}}=2

#Hence Proved

Similar questions