Math, asked by santoshsaha, 6 months ago

If x is real and x^3+1/x^3=0 then find the value of (x+1/x)^2​

Answers

Answered by sunithavedantam9
0

Step-by-step explanation:

r6idykdurwl6leymayeal74etea53eu4eyelw4e5r8yyiafsfsyru9dyiuyodyauy

Answered by Anonymous
5

 \bf  \LARGE\color{pink}Hello!

{ \huge{ \star}} \:  \:  \:  \:  { \underline{\bf  \LARGE Given :}}

  \rightsquigarrow  \sf \: x \in \: R

  \rightsquigarrow  \sf \:   {x}^{3}  +  \frac{1}{ {x}^{3} }  = 0 \\

______________

{ \huge{ \star}} \:  \:  \:  \:  { \underline{\bf  \LARGE To  \:  \: Find :}}

 \sf  \rightsquigarrow \:  {(x +  \frac{1}{x} )}^{2}  =  {?} \\

______________

{ \huge{ \star}} \:  \:  \:  \:  { \underline{\bf  \LARGE  Solution  :}}

 \tt \fcolorbox{skyblue}{skyblue}{Process - 1}

 \:  \:    \circ \:  \:  \:  \:  \:  \:  \:  \underline{\sf \:   {x}^{3}  +  \frac{1}{ {x}^{3} }  = 0 }\\

 \implies \sf (x +  \frac{1}{x} )( {x}^{2}  - x \times  \frac{1}{x}  +  \frac{1}{ {x}^{2} } )  = 0\:  \:  \:  \:  \bf[Formula] \\

 \implies \sf \: (x +  \frac{1}{x} ) = 0{ \underline{ \:  \:  \: \:  \:   \:  \:  \:  \:  \: }}(1)

 \:  \:  \therefore \:  \:  \:  \:  \:  \: { \underline{ \boxed{ \sf \: (x +  \frac{1}{x} ) ^{2}  = 0}}}

 \tt \fcolorbox{skyblue}{skyblue}{Process - 2}

 \:  \:    \circ \:  \:  \:  \:  \:  \:  \:  \underline{\sf \:   {x}^{3}  +  \frac{1}{ {x}^{3} }  = 0 }\\

 \implies \sf \:  {(x +  \frac{1}{x}) }^{3}  - 3 \: x  \frac{1}{x} (x +  \frac{1}{x} )\:  \:  \:  \:  \bf[Formula] \\

From eqn (1)

 \implies \sf(x +  \frac{1}{x} ) {}^{3}  = 0 \:  \:  \:  \:  \:  \bf[\because (x +  \frac{1}{x} ) = 0] \\

 \:  \:  \therefore \:  \:  \:  \:  \:  \: { \underline{ \boxed{ \sf \: (x +  \frac{1}{x} ) ^{2}  = 0}}}

______________

{ \huge{ \star}} \:  \:  \:  \:  { \underline{\bf  \LARGE    Formula  \:  \: Required:}}

 \sf\rightsquigarrow \:  {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  - ab +  {b}^{2} ) \\

 \sf\rightsquigarrow \:  {a}^{3}  +  {b}^{3}  = (a + b) {}^{3} - 3ab(a + b) \\

_________________

HOPE THIS IS HELPFUL...

 \tt \fcolorbox{skyblue}{skyblue}{@StayHigh}

Similar questions