Math, asked by lakshmirameshirugu, 5 hours ago

if x is real , then minimum value of x^2-x+1/x^2+x+1 is​

Answers

Answered by ashik49
0
Value will be minimum when denominator is max ,
At max denominator , derivative of denominator will tend to zero
I.e , der(x^2+x+1) = 0
-> 2x+1=0
-> x=-1/2
So minimum at x=-1/2
Min=3.5
Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:y = \dfrac{ {x}^{2} - x + 1 }{ {x}^{2}  + x + 1}

\rm :\longmapsto\:y( {x}^{2} + x + 1) =  {x}^{2} - x + 1

\rm :\longmapsto\:y{x}^{2} + yx + y =  {x}^{2} - x + 1

\rm :\longmapsto\:y{x}^{2} + yx + y  -  {x}^{2}  + x  -  1 = 0

\rm :\longmapsto\: {x}^{2}(y - 1) + x(y + 1) + y - 1 = 0

Now, For x to be real,

\rm :\longmapsto\:Discriminant,D \geqslant 0

\rm :\longmapsto\: {b}^{2} - 4ac = 0

Here,

\rm :\longmapsto\:a = y - 1

\rm :\longmapsto\:b = y + 1

\rm :\longmapsto\:c= y  -  1

So,

\rm :\longmapsto\: {(y + 1)}^{2} - 4(y - 1)(y - 1) \geqslant 0

\rm :\longmapsto\: {(y + 1)}^{2} -  {[2(y - 1)]}^{2} \geqslant 0

\rm :\longmapsto\: {(y + 1)}^{2} -  {[2y - 2]}^{2} \geqslant 0

\rm :\longmapsto\:(y + 1 + 2y - 2)(y + 1 - 2y +  2) \geqslant 0

\rm :\longmapsto\:(3y - 1)(3 - y) \geqslant 0

\rm :\longmapsto\: - (3y - 1)( y - 3) \geqslant 0

\rm :\longmapsto\: (3y - 1)( y - 3) \leqslant 0

\bf\implies \:\dfrac{1}{3} \leqslant y \leqslant 3

\bf\implies \:\dfrac{1}{3}  \leqslant  \dfrac{ {x}^{2} - x + 1 }{ {x}^{2}  + x + 1}  \leqslant 3

Hence,

\bf\implies \:Minimum \: value \: of \:   \dfrac{ {x}^{2} - x + 1 }{ {x}^{2}  + x + 1}   = \dfrac{1}{3}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Let a and b are two real numbers such that a < b then

\boxed{\tt{ (x - a)(x - b) &lt; 0 \: \rm\implies \:a &lt; x &lt; b}}

\boxed{\tt{ (x - a)(x - b)  \leqslant  0 \: \rm\implies \:a  \leqslant  x  \leqslant  b}}

\boxed{\tt{ (x - a)(x - b)   &gt;   0 \: \rm\implies \:x &lt; a \: or \:x &gt;   b}}

\boxed{\tt{ (x - a)(x - b)  \geqslant  0 \: \rm\implies \:x  \leqslant  a \: or \:x  \geqslant   b}}

Similar questions