Math, asked by satishkujur4585, 1 year ago

If x is the mean of 10 natural numbers x1, x2, x3, …………x10, then sum of deviation from its mean is

Answers

Answered by Shaizakincsem
22

The mean of the above given natural numbers

=  X̄ = x₁ + x₂ + x₃ + .....x₁₀ / 10 -- (1)

(x₁ -  X̄) + (x₂ -  X̄) + ... + (x₁₀ -  X̄)

= x₁ + x₂ + x₁₀ - 10 X̄

= x₁ + x₂ + x₁₀ - 10

(x₁ + x₂ + x₁₀/10)

(x₁ + x₂ + x₁₀) - (x₁ + x₂ + x₁₀)

= 0 = RHS


Answered by throwdolbeau
24

Answer:

Sum of deviations from the mean is 0.

Step-by-step explanation:

\text{Given , 10 natural numbers are : }x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_{10}\\\\\text{Now, mean of the above natural numbers = x} =(\frac{x_1+x_2......+x_{10}}{10}) ..............(1)\\\\\text{Therefore, Sum of deviations from mean is given by : }\\(x_1-x)+(x_2-x)+........+(x_{10}-x)\\=x_1+x_2......+x_{10}-10\cdot x\\=x_1+x_2......+x_{10}-10\cdot (\frac{x_1+x_2......+x_{10}}{10})\text{ , By using (1)}\\\\=(x_1+x_2......+x_{10})-(x_1+x_2......+x_{10})\\=0

Hence, the sum of deviation from its mean = 0


Similar questions