if x is the mean of X1 X2 X3.... Xn then find the mean of ax1,ax2,ax3....axn,X1/a,X2/a......xn/a?(where a≠0)
Answers
Answer:
a=0
Step-by-step explanation:
Answer:
the mean of ax1,ax2,...axn = ax bar , Mean of x1/a,x2/a,...xn/a = x bar / a
Mean of ax1,ax2,...axn, x1/a,x2/a,.. xn/a = ((a² + 1)/2a) (x bar)
Step-by-step explanation:
if x bar is the mean of x1, x2... xn.
((a² + 1)/2a) (x bar)
Then sum of x1, x2... xn. = n( x bar)
Sum of ax1,ax2,...axn = a (x1 + x2 + .................xn)
= an( x bar)
Mean = an( x bar)/n = a( x bar)
Sum of x1/a,x2/a,...xn/a = (x1 + x2 + .................xn)/a
= n( x bar)/a
Mean = n( x bar)/an = ( x bar)/a
if taking both together ax1,ax2,...axn & x1/a,x2/a,.. xn/a
number of terms = n + n = 2n
Sum = a(x1 + x2 + .................xn) + (x1 + x2 + .................xn)/a
= (x1 + x2 + .................xn) (a + 1/a)
Mean = n( x bar) (a² + 1)/a*2n
= (x bar) (a² + 1)/2a
((a² + 1)/2a) (x bar)
THANKS
PLEASE MARK ME AS BRAINLIST