Chemistry, asked by saisha61, 10 months ago

If 'x' is the radius of first Bohr's orbit of the
hydrogen atom. Then the ratio of radius of 2nd 4th and 6th orbit is​

Answers

Answered by Anonymous
2

 \large{ \underline{ \underline{ \bold{ \: Answer : \:  \:  \: }}}}

 \to 1 : 4 : 9

\large{ \underline{ \underline{ \bold{ \: Explanation : \:  \:  \: }}}}

The radius of the n^{th} orbit is

r_n=\frac{n^2\times 52.9}{Z}    \:  \bold{(in \:  \:  pm) }

where ,

r_n = radius of  \bold{ {n}^{th} } orbit

n = number of orbit

Z = atomic number

Given that , x is the radius of first Bohr's orbit of the hydrogen atom

 \to r_1=x=\frac{1^2\times 52.9}{1}</p><p>

 \to r_2 = \frac{2^2\times 52.9}{1}=4x

 \to r_4=\frac{4^2\times 52.9}{1}=16x</p><p>

 \to r_6 =\frac{6^2\times 52.9}{1}=36x</p><p>

 {\huge \star } \:  \: r_2:r_4:r_6

4x : 16x : 36x = 1 : 4 : 9

Therefore , the ratio of the radius of second , fourth and sixth orbit is 1: 4 : 9

Similar questions