Math, asked by tracymonis, 9 days ago

If X is the universal set and A, B are subsets of X such that n(X) = 100, n(A') = 60, n(B') = 45 and n[(AUB)'] = 10, find (i) n(A n B) (ii) n(A'U B').​

Answers

Answered by mathdude500
62

\large\underline{\sf{Solution-}}

Given that

\rm \: n(X) = 100 \\

\rm \: n(A') = 60 \\

\rm\implies \:n(A) = n(X) - n(A') = 100 - 60 = 40 \\

Also,

\rm \: n(B') = 45 \\

\rm\implies \:n(B) = n(X) - n(B') = 100 - 45 = 55 \\

Also, given that

\rm \: n[(A\cup B)'] = 10 \\

\rm\implies \:\rm \: n[(A\cup B)] = n(X) - n[(A\cup B)'] = 100 - 10 = 90 \\

So, we have now

\rm \: n(A) = 40 \\

\rm \: n(B) = 55\\

\rm \: n(A\cup B) = 90\\

Now, we know

\rm \: n(A\cup B) = n(A) + n(B) - n(A\cap B)\\

So,

\rm \: n(A\cap B) = n(A) + n(B) - n(A\cup B)\\

On substituting the values, we get

\rm \: n(A\cap B) = 40 + 55 - 90\\

\rm \: n(A\cap B) = 95 - 90\\

\rm\implies \:\boxed{\sf{  \:\rm \: n(A\cap B) = 5 \:  \: }}\\

Also,

\rm \: n(A'\cup B') \\

\rm \: =  \:n(X) - n(A\cap B) \\

\rm \: =  \:100 - 5 \\

\rm \: =  \:95 \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: n(A'\cup B') = 95 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\rm \: n(A - B) = n(A) - n(A\cap B) \\

\rm \: n(B - A) = n(B) - n(A\cap B) \\

\rm \: n(A\cup B) = n(A - B) + n(A\cap B) + n(B - A) \\

\rm \: n(A'\cap B') = n(U) - n(A\cup B) \\

Answered by xxblackqueenxx37
105

 \sf \fbox \red{Answer}

 \sf \:  = n(x) = 100 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \:= n  ('A') = 60\:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf \:  = n(B') = 45 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \:  = n(A  \: \cup \ \: B)' = 10

1)  \:  \sf \:  = n(A  \: \cap \: B)' =   \: n(A') + n(B') - n(A \:  \cup \: B)' \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =   60 + 45 - 10 \\  \\  \sf \: = n(A  \: \cap \: B)  = 100 - ( \: A  \: \cap \: B)' \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \:  = 100 - 95 \\  \sf \:  = 5

2) \sf \:  = (A  \: \cup \: B) = (A  \: \cap \: B)' \\  \sf \:  = 95

therefore

  1. n(A∩B) = 5
  2. n('A∪B') = 95
Similar questions