Math, asked by abi445, 6 months ago

if x+iy=√1+i/1-i prove that x^2+y^2=1​

Answers

Answered by abhi569
42

Step-by-step explanation:

⇒ x + iy = \sqrt{\frac{1+i}{1-i}}

             = \sqrt{\frac{1+i}{1-i}\times\frac{1+i}{1+i}}

             = \sqrt{\frac{(1+i)^2}{(1-i)(1+i)}}

             = \sqrt{\frac{1+i^2+2(1)(i)}{1-i^2}}

             = \sqrt{\frac{1-1+2i}{1-(-1)}}

             = \sqrt{\frac{2i}{1+1}}

             = \sqrt{\frac{2i}{2}}

             =\sqrt{1i}

Taking modulus both sides:

⇒ | x + iy | = | √1i  |

⇒ x² + y ² = √1²

⇒ x² + y² = 1  

Answered by pulakmath007
3

SOLUTION

GIVEN

\displaystyle \sf{ x + iy =  \sqrt{ \frac{1 + i}{1 - i} }  }

TO PROVE

\displaystyle \sf{  {x}^{2} +  {y}^{2}  = 1 }

EVALUATION

Here the given equation equation is

\displaystyle \sf{ x + iy =  \sqrt{ \frac{1 + i}{1 - i} }  }

\displaystyle \sf{  \implies \: x + iy =  \sqrt{ \frac{ -  {i}^{2}  + i}{1 - i} }  }

\displaystyle \sf{  \implies \: x + iy =  \sqrt{ \frac{  i(1 - i)}{1 - i} }  }

\displaystyle \sf{  \implies \: x + iy  =  \sqrt{i} }

Squaring both sides we get

\displaystyle \sf{  \implies \:  {x}^{2} + 2ixy +  {i}^{2}  {y}^{2}    = i}

\displaystyle \sf{  \implies \:  {x}^{2}   + 2ixy  -  {y}^{2}    = i}

\displaystyle \sf{  \implies \:  {x}^{2} -  {y}^{2}  + 2ixy     = i}

Comparing both sides we get

\displaystyle \sf{  \implies \:  {x}^{2} -  {y}^{2} =  0 \:  \:  \: and \:  \:  \: 2xy = 1}

Now

\displaystyle \sf{   {( {x}^{2}  +   {y}^{2} )}^{2} }

\displaystyle \sf{    = {( {x}^{2}   -    {y}^{2} )}^{2}  +4 {x}^{2} {y}^{2}  }

\displaystyle \sf{    = {(0)}^{2}   +  {(2xy)}^{2}  }

\displaystyle \sf{    = {(1)}^{2}  }

\displaystyle \sf{     = 1}

\displaystyle \sf{  \implies  {( {x}^{2}  +   {y}^{2} )}^{2}  = 1}

\displaystyle \sf{  \implies  {( {x}^{2}  +   {y}^{2} )}^{}  = 1}

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if a+ib/c+id is purely real complex number then prove that ad=bc

https://brainly.in/question/25744720

2. Prove z1/z2 whole bar is equal to z1 bar/z2 bar.

Bar here means conjugate

https://brainly.in/question/16314493

Similar questions