Math, asked by Anonymous, 1 year ago

if,
x+iy=3÷2+cos theta+i sin theta
then prove,
x^2+y^2=4x-3


plz help....

Answers

Answered by rohitkumargupta
6
z=(x+iy)
(x+iy)=r(cos theta+i sin theta)
r cos theta=x and ,r sin theta=y
on square we get,
r²=(x²+y²)
9/4=x²+y²

rohitkumargupta: thanks
Anonymous: han ji...no sorry no thanks
Answered by sandy1816
3

\huge\color{Black}\boxed{\colorbox{yellow}{❀Answer❀}}\\

x + iy =  \frac{3}{2 + cos \theta + isin \theta}  \\ rationalizing \:  \: the \:  \: denominator \\  =  \frac{3}{2 + cos \theta + isin \theta}  \times  \frac{2 + cos \theta - isin \theta}{2 + cos \theta - isin \theta}  \\  =  \frac{6 + 3cos \theta - 3isin \theta}{( {2 + cos \theta})^{2} - ( {isin \theta})^{2}  }  \\  =  \frac{6 + 3cos \theta - 3isin \theta}{4 + 4cos \theta +  {cos}^{2} \theta +  {sin}^{2}   \theta}  \\  =  \frac{6 + 3cos \theta - 3isin \theta}{5 + 4cos \theta}  \\  =  \frac{6 + 3cos \theta}{5 + 4cos \theta}  +  \frac{ - 3isin \theta}{5 + 4cos \theta}  \\  \therefore \:  \:  \: \:   \:  \: x =  \frac{6 + 3cos \theta}{5 + 4cos \theta}  \:  \:  and  \:  \: y =  \frac{ - 3sin \theta}{5 + 4cos \theta}  \\ now \:  \:  \:  {x}^{2}  +  {y}^{2}  =  \frac{( {6 + 3cos \theta})^{2}  + ( { - 3sin \theta})^{2} }{( {5 + 4cos \theta})^{2} }  \\  =  \frac{36 + 36cos \theta + 9 {cos}^{2}  \theta + 9 {sin}^{2}  \theta}{( {5 + 4cos \theta})^{2} }  \\  =  \frac{45 + 36cos \theta}{( {5 + 4cos \theta})^{2} }  \\  =  \frac{9}{5 + 4cos \theta}  \\  =  \frac{9 + 12cos \theta - 12cos \theta}{5 + 4cos \theta}  \\  =  \frac{24 + 12cos \theta - 15  -  12cos \theta}{5 + 4cos \theta}  \\  =  \frac{4(6 + 3cos \theta) - 3(5 + 4cos \theta)}{5 + 4cos \theta}  \\  =  \frac{4(6 + 3cos \theta)}{5 + 4cos \theta}  - 3 \\  = 4x - 3 \\  \therefore \:  \:  \:  \:  \:  \:  \implies {x}^{2}  +  {y}^{2}  = 4x - 3

❀◕ ‿ ◕❀Hope it helps❀◕ ‿ ◕❀

Similar questions