If x+iy=(a+ib) ^2, prove that x^2 +y^2 =(a^2+b^2)^2
Answers
Answered by
1
Step-by-step explanation:
X+iy=(a+ib)^2
x+iy=a^2-b^2+2iab. {i^2=-1}
compare real part and imaginary part
x=a^2-b^2 , y=2ab
squaring on both side (xy terms)
x^2=(a^2-b^2)^2
y^2=4a^2b^2
x^2+y^2=(a^2-b^2)^2+4a^2b^2
x^2+y^2=(a^2+b^2)^2
Hence proved
Similar questions