Math, asked by savitashrinathe, 6 months ago

if x+iy=(a+ib)³ then show that x/a+y/b=4(a²-b²)​

Answers

Answered by udayteja5660
16

Answer:

Proved below.

Step-by-step explanation:

x + iy = (a + ib)³

        = a³ + (ib)³ + 3a²(ib) + 3a(ib)²

[∵ (a + b)³ = a³ + b³ + 3a²b + 3ab²]

See we know that

i = √-1

i² = i*i = (√-1)² = -1

i³ = i²*i = -1*√-1 = -i

i⁴ = i²*i² = (-1)*(-1) = 1

⇒x + iy = a³ + (ib)³ + 3a²(ib) + 3a(ib)²

           = a³ + (-i)*b³ + 3a²(ib) + 3a(-1)b²

           = a³ - ib³ + i*3a²b - 3ab²

⇒x + iy =  a³- 3ab² + i(3a²b - b³)

Compare the real and imaginary coefficients in both sides

⇒x = a³- 3ab²                            |            ⇒y = 3a²b - b³

Divde with 'a' on both sides    |           Divide with 'b' on both sides

⇒x/a = a² - 3b² _____  (1)        |           ⇒y/b = 3a² - b²  ______(2)

Add (1) and (2)

⇒x/a + y/b = a² - 3b² + 3a² - b²

                 = 4a² - 4b²

                 =4(a² - b²)

∴x/a + y/b = 4(a² - b²)

Hence proved.

Similar questions