Math, asked by tarakmehta10, 1 year ago

If x + iy = a+ib/a-ib , prove that x²+y²=1

From 11 class from complex number chapter


brunoconti: there is a much much more easier way to do that. resend the question if u want 2 c my solution

Answers

Answered by Anonymous
7
hey mate here is your answer ⏩⏩

X+iy=a+ib/a-ib
or, x+iy=(a+ib)(a+ib)/(a-ib)(a+ib)
or, x+iy=(a²+2aib+i²b²)/(a²-i²b²)
or, x+iy={(a²-b²)+i.2ab}/(a²+b²)
or, x+iy=(a²-b²)/(a²+b²)+i. 2ab/(a²+b²)
∴, equating both sides, x=a²-b²/a²+b² and y=2ab/a²+b²
∴, x²+y²
= {(a²-b²)/(a²+b²)}²+{2ab/(a²+b²)}²
= {(a²-b²)²+4a²b²}/(a²+b²)²
= (a⁴-2a²b²+b⁴+4a²b²)/(a²+b²)²
= (a⁴+2a²b²+b⁴)/(a²+b²)²
= (a²+b²)²/(a²+b²)²
= 1

....
Answered by Anonymous
6

Step-by-step explanation:

2ab/(a²+b²)

equating both sides, x=a²-b²/a²+b² and y=2ab/a²+b²

x²+y²

= {(a²-b²)/(a²+b²)}²+{2ab/(a²+b²)}²

= {(a²-b²)²+4a²b²}/(a²+b²)²

= (a⁴-2a²b²+b⁴+4a²b²)/(a²+b²)²

= (a⁴+2a²b²+b⁴)/(a²+b²)²

= (a²+b²)²/(a²+b²)²

= 1

Similar questions