Math, asked by sreenath731, 10 months ago

If x-iy=√a-ib/c-id prove that x^2+y^2=a^2+b^2/c^2+d^2

Answers

Answered by BrainlyPopularman
12

Answer:

x - iy =  \sqrt{ \frac{a - ib}{c - id} }  \:  \:  \:  \:  \:  \: ..............(1)\\  \\  x + iy =  \sqrt{ \frac{a + ib}{c + id} } \:  \:  \:  \:  \:  \: ..............(2)  \\  \\ (1) \times (2) =  >  \\  \\  {x}^{2}  -  {i}^{2}  {y}^{2}  =  \sqrt{ \frac{ {a}^{2} -  {i}^{2}  {b}^{2}  }{ {c}^{2}  -  {i}^{2}  {d}^{2} } } \\  \\  {x}^{2}  +  {y}^{2}  =  \sqrt{  \frac{ {a}^{2}  +  {b}^{2} }{ {c}^{2}  +  {d}^{2} } }

Similar questions