If x+iy=(a+ib)(c+id) where a,b,c,d,x and y are real numbers, prove that, X^2 + y^2= (ac-bd)^2 + (ac+bd)^2
Answers
Answered by
1
Solution :
Method 1.
Given,
x + iy = (a + ib) (c + id)
⇒ x + iy = ac + iad + ibc + i²bd
⇒ x + iy = ac + iad + ibc - bd [ ∵ i² = - 1 ]
⇒ x + iy = (ac - bd) + i (ad + bc) ...(1)
Taking absolute value or modulus of the complex numbers from both the sides, we get
√(x² + y²) = √{(ac - bd)² + (ad + bc)²}
⇒ x² + y² = (ac - bd)² + (ad + bc)²
Hence, proved.
Method 2.
Comparing among the real and imaginary parts from both sides of (1), we get
x = ac - bd & y = ad + bc
∴ x² + y² = (ac - bd)² + (ad + bc)²
Hence, proved.
Similar questions