If x lies in second quadrant and 3tanx+4=0, then find the value of
2cotx- 5cosx+sinx.
Answers
Answered by
2
Step-by-step explanation:
Since, angle A lies in the second quadrant hence 90∘<A<180∘⟹cosA<0,tanA<0,sinA>0
Given 3tanA+4=0⟹tanA=−43 Now, we know
cotA=1tanA=1−4/3=−34
cosA=1secA=−11+tan2A√=11+(−4/3)2√=−35
sinA=|tanA|1+tan2A√=|−4/3|1+(−4/3)2√=45
Now, substituting all the corresponding values in the given expression, one should get
2cotA−5cosA+sinA=2(−34)−5(−35)+45
=−32+3+45
=2310
Attachments:
Similar questions