Math, asked by mcdyno16, 4 hours ago

if x=log(1+t²) and y=t- tan-¹t, then dy/DX is equal to​

Answers

Answered by LaeeqAhmed
3

 x =   \sf \log(1 +   {t}^{2} )

 \implies \frac{dx}{dt}  =(  \frac{1}{1 +  {t}^{2} } )(2t)

 \therefore \frac{dx}{dt}  = \frac{2t}{1 +  {t}^{2} } ...(1)

y = t -  \tan ^{ - 1} t

  \implies\frac{dy}{dt}  = 1 -  \frac{1}{1 +  {t}^{2} }

  \implies\frac{dy}{dt}  =  \frac{1 +  {t}^{2}  - 1}{1 +  {t}^{2} }

 \therefore\frac{dy}{dt}  =  \frac{  {t}^{2}  }{1 +  {t}^{2} }...(2)

 \frac{dy}{dx}  = \large{ \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} } }

 \implies \frac{dy}{dx}  =  \frac{ \frac{ {t}^{2} }{1 +  {t}^{2} } }{ \frac{2t}{1 +  {t}^{2} } } [\sf from\: (1) and (2)]

 \implies \frac{dy}{dx}  =  \frac{ {t}^{2} }{2t }

 \orange{ \therefore \frac{dy}{dx}  =  \frac{ t }{2 } }

HOPE IT HELPS!!

Answered by bawasohani
1

Step-by-step explanation:

☝☝☝☝☝☝☝☝

Hope you understand

Attachments:
Similar questions