Math, asked by gayatrikharode849, 1 month ago

if x = log (1+t2), y= t - tan -1 t show that day/dx = √ ex-1/2.​

Answers

Answered by rakeshdubey33
0

Step-by-step explanation:

Given :

x =  log(1 +  {t}^{2} ) ; \: y \:  = t \:  -  \:  { tan}^{ - 1}t

To prove :

 \frac{dy}{dx}  =  \frac{1}{2} \sqrt{ {e}^{x}  - 1}

Solution :

 \frac{dx}{dt}  =  \frac{1}{(1 +  {t}^{2} )} \times 2t

 \frac{dy}{dt}  = 1 -  \frac{1}{(1 +  {t}^{2} )}

 \frac{dy}{dx}  =  \:  \frac{dy}{dt}  \div  \frac{dx}{dt}  \\  \implies \:  \frac{dy}{dx}  =  \:  \frac{ {t}^{2} }{(1 +  {t}^{2} )} \times  \frac{(1 +  {t}^{2} )}{2t}   \\   \implies \:  \frac{dy}{dx}  \:  =   \frac{ {t}^{2} }{2t}  =  \frac{t}{2}

Now,

Since, \: x =  log(1 +  {t}^{2} ) \\   \therefore \: (1 +  {t}^{2} ) =  {e}^{x}  \\  \therefore \:  {t}^{2}  =  {e}^{x}  - 1 \\  \therefore \: t \:  =  \sqrt{ {e}^{x}  - 1}  \\  \therefore \:  \frac{t}{2}  =  \frac{1}{2}  \sqrt{ {e}^{x}  - 1}  \\  \implies \:  \frac{dy}{dx}  \:  =  \frac{1}{2}  \sqrt{ {e}^{x}  - 1}

Hence, proved.

Similar questions